Aerospace Legacy Foundation

Your portal to America's aerospace history

Aerospace Legacy Foundation (ALF) is a community based non-profit organization (501c3) including aerospace retirees and the public at large. Preserving Southern California's Aerospace and Aviation History including Downey's aerospace legacy.

Apollo History Gallery

Apollo Space Program

 

North American Aviation  was the prime contractor for the Apollo Space Program. 

Downey's Space  & Information Systems Division was the "shop" and plant where Apollo was born.

Over 25,000 people worked in and around the Space Division at Downey, CA  during  the 1960's.

Apollo Logo - NASA
Apollo in his Chariot with the hours. John Singer Sargent.

Apollo in his Chariot with the hours. John Singer Sargent.

WITH THEIR EYES ON THE STARS-

The documentary "With Their Eyes on the Stars," was produced in 1963 by North American Aviation and NASA to encourage support for the Apollo program. John Stewart together with brother Mike's group, "WE FIVE," John Phillips and Scott McKenzie recorded the score using traditional American folk songs as well as songs written by John and Mike. Directed by Cal Reed. Produced by Cedric Francis. (Thanks to Jerry Burgan).

"I uploaded this video from the DVD provided by Stan Barauskas of Aerospace Legacy Foundation Museum in the old Rockwell Plant in Downey. Here is the headline of "SKYWRITER", a publication of North American Aviation, dated Jan 17, 1964: DOWNEY PREMIERES LUNAR FILM Jan. 21. "With Their Eyes on The Stars", a film keynoting, the historical and importance of the nation's lunar program, will be given its local premier Tuesday night at Downey. The 22-minutes color-sound film will be shown at the Meralta Theatre, 10912 Downey Ave. Premier ceremonies will begin at 7 p.m. and will feature officials from NASA, the City of Downey, top management representatives of the division. Personal Appearance Making a personal appearance will be John Stewart of the Kingston Trio, who wrote the original folk music and lyrics for the movie. ....... I have included several stills of the newspaper at the end for you to read."

 

 

Apollo 9 Mission

Documentary views of Apollo CM manufacturing at the North American- Rockwell, Downey, Calif facility. 1- 31 -1968. Image- NASA

Documentary views of Apollo CM manufacturing at the North American- Rockwell, Downey, Calif facility. 1- 31 -1968. Image- NASA

Mission Objective
The primary objective of Apollo 9 was an Earth-orbital engineering test of the first crewed lunar module, or LM. Concurrent prime objectives included an overall checkout of launch vehicle and spacecraft systems, the crew, and procedures. This was done by performing an integrated series of flight tasks with the command module, or CM, the service module, or SM, the joined command and service module, or CSM, the LM and S-IVB stage while they were linked in launch or various docked configurations, and while they were flying separate orbital patterns. The LM was to be tested as a self-sufficient spacecraft, and was also to perform active rendezvous and docking maneuvers paralleling those scheduled for the following Apollo 10 lunar-orbit mission. NASA

Documentary views of Apollo manufacturing at the North American- Rockwell, Downey, Calif facility 1-31-1968. Image- NASA

Documentary views of Apollo manufacturing at the North American- Rockwell, Downey, Calif facility 1-31-1968. Image- NASA

Apollo crew compartment stowage review at North American, Downey, Calif., for the Apollo 9 crew training. May 2, 1968.

Apollo crew compartment stowage review at North American, Downey, Calif., for the Apollo 9 crew training. May 2, 1968.

Apollo 9 Mission Objective continued...

The flight plan's top priority was the CSM and LM rendezvous and docking. This was performed twice - once while the LM was still attached to the S-IVB, and again when the LM was active. Further goals included internal crew transfer from the docked CSM to the LM; special tests of the LM's support systems; crew procedures; and tests of flight equipment and the extravehicular activity, or EVA, mobility unit. The crew also configured the LM to support a two-hour EVA, and simulated an LM crew rescue, which was the only planned EVA from the LM before an actual lunar landing. NASA

Apollo 9 Integration

Apollo 9 Integration

The LM descent and ascent engines fired on orbital change patterns to simulate a lunar-orbit rendezvous and backup abort procedures. The CSM service propulsion system, or SPS, fired five times, including a simulation of an active rendezvous to rescue an LM that had become inactivate. NASA

Apollo 9 Crew Training

Apollo 9 Crew Training

Apollo 9 in space.

Apollo 9 in space.

Apollo Slideshow

"In 1961, in an attempt to rally enthusiasm for space exploration as a national priority, President John F. Kennedy issued a proclamation calling for a new effort aimed at “placing a man on the moon and returning him before the decade is out.”

To accomplish this goal, NASA put out a two bids for space program contracts. The first was for the Saturn S-11, the second stage of the Saturn V Launch Vehicle designed to send multi-ton payloads into space. The second was for the Project Apollo Spacecraft Development Program, comprising the command module and service module. North American won both awards, and in so doing, made Downey the industrial center for America’s lunar space program.

To support the Apollo program, NASA established the Resident Apollo Spacecraft Office (RASPO) at the Downey plant. During the peak of the Apollo program, the number of resident government and support contract personnel (including astronauts) was over 300.

Employment at the Downey site grew rapidly, as well. At its peak in the mid 1960s, the NASA Industrial Plant, Downey (as it was officially renamed in 1964) supported more than 35,000 workers". Columbia memorial Space Center in Downey. More here...

North American Aviation plant in Downey, California. April, 1961.

North American Aviation plant in Downey, California. April, 1961.

"The Downey missile operation, now advertising itself as the Space & Information Systems Division, proposed and was accepted as a qualified bidder for the Saturn S-II launch vehicle system, the massive mid-stage for a family of NASA super booster concepts for launching multi-ton payloads into space. The Saturn S-II was the richest prize so far to be offered in the ordained National Space Program and it was integral in the Apollo space vehicle which would essay the lunar mission. The S&ID proposal team, a coupling of seasoned Navaho engineers and newcomers from other North American divisions submitted its bid and in September 1961 the space agency selected S&ID as the SII contractor. The Downey plant was suddenly in the forefront of space plans. It would survive; it would even grow some. The winning of the Saturn S-II prime contract also forced a tough business decision, for while the S-II proposal had been in submittal, S&ID was preparing a bid for the Project Apollo Spacecraft Development Program, encompassing the man-carrying command module and attached service module. The Apollo Spacecraft program engendered the greatest technological task in history." Cradle of the Cosmic Age, Russ Murray

Aerial view of Downey 1940's Imperial at Bellflower Blvd. Rear view of North American Aviation upper left, 1950's. Downey Fertilizer Company is seen with smoke rising from plant, makers of Red Star Brand. Image- Downey Historical Society/ Sadie Kindness West.

Aerial view of Downey 1940's Imperial at Bellflower Blvd. Rear view of North American Aviation upper left, 1950's. Downey Fertilizer Company is seen with smoke rising from plant, makers of Red Star Brand. Image- Downey Historical Society/ Sadie Kindness West.

North American Aviation Space and information Division home of the Apollo Spacecraft, 225 acres at Downey, CA, 1960's. Lakewood Blvd. is on the right, Imperial Hwy. is on the top, Bellflower Blvd. is on the left and Stewart & Gray Rd. is on the bottom. Image- ALF

North American Aviation Space and information Division home of the Apollo Spacecraft, 225 acres at Downey, CA, 1960's. Lakewood Blvd. is on the right, Imperial Hwy. is on the top, Bellflower Blvd. is on the left and Stewart & Gray Rd. is on the bottom. Image- ALF

Apollo drop test tower in Downey at North American Rockwell. Image- ALF Archive/ NASA

Apollo drop test tower in Downey at North American Rockwell. Image- ALF Archive/ NASA

Astronaut Virgil I. Grissom and other members of the first Apollo crew inspect spacecraft equipment during a visit to North American Aviation. NORTH AMERICAN AVIATION, INC., DOWNEY, CA , June 24, 1966.

Astronaut Virgil I. Grissom and other members of the first Apollo crew inspect spacecraft equipment during a visit to North American Aviation. NORTH AMERICAN AVIATION, INC., DOWNEY, CA , June 24, 1966.

Apollo Capsule Heat and Cold Testing- Image- Boeing

Apollo Capsule Heat and Cold Testing- Image- Boeing

This high angle view shows the Apollo spacecraft Command Module for the AS-204 mission (later renamed Apollo 1), looking toward -Z axis, during preparation for installation of the crew compartment heat shield, showing mechanics working on aft bay. Image- Space.com

This high angle view shows the Apollo spacecraft Command Module for the AS-204 mission (later renamed Apollo 1), looking toward -Z axis, during preparation for installation of the crew compartment heat shield, showing mechanics working on aft bay. Image- Space.com

Apollo Command Module fabrication at North American Aviation's Downey plant. Image- ALF Archive

Apollo Command Module fabrication at North American Aviation's Downey plant. Image- ALF Archive

The Apollo Experience

"The Apollo program was designed to land humans on the Moon and bring them safely back to Earth. Six of the missions (Apollos 11, 12, 14, 15, 16, and 17) achieved this goal. Apollos 7 and 9 were Earth orbiting missions to test the Command and Lunar Modules, and did not return lunar data. Apollos 8 and 10 tested various components while orbiting the Moon, and returned photography of the lunar surface. Apollo 13 did not land on the Moon due to a malfunction, but also returned photographs. The six missions that landed on the Moon returned a wealth of scientific data and almost 400 kilograms of lunar samples. Experiments included soil mechanics, meteoroids, seismic, heat flow, lunar ranging, magnetic fields, and solar wind experiments." Wiki

"More than 500 contractors worked on both large and small aspects of Apollo. For example, the Boeing Company was the prime contractor for the first stage of theSaturn rocket, North American Aviation for the second stage, and the Douglas Aircraft Corporation for the third stage. The Rocketdyne Division of North American Aviation was responsible for the rocket engines and International Business Machines for the instruments. These prime contractors, with more than 250 subcontractors, provided millions of parts and components for use in the Saturn launch vehicle, all meeting exacting specifications for performance and reliability." NPS

Apollo 11

Guenter Wendt and the Apollo 11 Crew within the White Room atop the gantry at Launch Complex 39, Pad A. The Apollo 11 astronauts egress from the Apollo spacecraft after participating in the Countdown Preparation Test. Pad leader Guenter Wendt speaks with Neil Armstrong. Astronaut Michael Collins stands to Mr. Armstrong's left. NASA

Guenter Wendt and the Apollo 11 Crew within the White Room atop the gantry at Launch Complex 39, Pad A. The Apollo 11 astronauts egress from the Apollo spacecraft after participating in the Countdown Preparation Test. Pad leader Guenter Wendt speaks with Neil Armstrong. Astronaut Michael Collins stands to Mr. Armstrong's left. NASA

Apollo 11 Command Module (CM-107) during construction and testing at the Rockwell plant in Downey, California.

Apollo 11 Command Module (CM-107) during construction and testing at the Rockwell plant in Downey, California.

“It was a wondrous opportunity to be part of something historical. We just had a hard time comprehending what it would mean to other people, what it would mean to ourselves.” – Buzz Aldrin
Astronauts train at Langley Research Center, 1959. From left to right are Air force Capt. Virgil Grissom, Air Force Capt. Donald Slayton, Air Force Capt. Beroy Cooper, Marine Lt. Col. John Glenn, Navy Lt. Malcolm Carpenter, Navy Lt. Cmdr. Alan Shapard and Navy Lt. Cmdr. Walter Schirra. - Photos - NASA archive photos - NY Daily News

Astronauts train at Langley Research Center, 1959. From left to right are Air force Capt. Virgil Grissom, Air Force Capt. Donald Slayton, Air Force Capt. Beroy Cooper, Marine Lt. Col. John Glenn, Navy Lt. Malcolm Carpenter, Navy Lt. Cmdr. Alan Shapard and Navy Lt. Cmdr. Walter Schirra. - Photos - NASA archive photos - NY Daily News

NASA Langley Research Center's Contributions to the Apollo Program

"More than twenty years after the first manned landing on the moon, President Kennedy's commitment to the lunar mission sounds as bold as it ever did: American astronauts should fly a quarter of a million miles, make a pinpoint landing on a strange planet, blast off it and return home safely after an eight-day voyage through space. When Kennedy challenged the nation to risk this incredible journey, the only United States manned spaceflight up to that time had been Alan B. Shepard's 15-minute suborbital excursion in Mercury capsule, Freedom 7. NASA was not exactly sure how the lunar mission should be made at all, let alone achieved in less than ten years' time.

Answering President Kennedy's challenge and landing men on the moon by 1969 required the most sudden burst of technological creativity, and the largest commitment of resources ($24 billion), ever made by any nation in peacetime. At its peak, the Apollo program employed 400,000 Americans and required the support of over 20,000 industrial firms and universities.

This NASA Fact sheet pays tribute to the contributions NASA Langley Research Center made to the first manned lunar landing, made July 20, 1969, by Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. "Buzz" Aldrin, Lunar Module pilot." More here...

The Rendezvous That Was Almost Missed:
Lunar Orbit Rendezvous and the Apollo Program

In the opinion of many space historians, NASA Langley's most important contribution to the Apollo Program was its development of the lunar-orbit rendezvous (LOR) concept. The brainchild of a few true believers at Langley, LOR's basic premise was to fire an assembly of three spacecraft into Earth orbit on top of a single powerful rocket.

"The basic premise of LOR was to fire an assembly of three spacecraft into Earth orbit on top of a single powerful rocket (the Saturn V). With the Apollo spacecraft, the Saturn V stood 363 feet tall. Pictured is the launch of Apollo 11, the first mission to land men on the moon, on July 16, 1969".

More here on Lunar Orbit Rendezvous, "Enchanted Rendezvous"

Armstrong at Langley Research Center. Image- NASA

"When the United States set a goal of landing a man on the moon, NASA Langley Research Center tackled the many challenges of spaceflight, trained astronauts, managed Project Mercury, and assumed major roles in both the Gemini and Apollo programs. Langley led the Lunar Orbiter initiative, which not only mapped the moon, but chose the spot for the first human landing. Langley aerospace engineer John Houbolt championed the lunar-orbit rendezvous concept, enabling the Apollo 11 moon landing and the safe return of its crew to Earth.

Neil Armstrong, the first human to set foot on the lunar surface, trained at Langley's Lunar Landing Research Facility on equipment that cancelled all but one-sixth of Earth's gravitational force to match that of the moon's. This photograph shows Armstrong at the Lunar Landing Research Facility on Feb. 12, 1969. Twenty-four astronauts practiced touchdowns at the facility, where overhead cables supported five-sixths of the weight of a full-size model lander, and thrust was provided by a working rocket engine.

Part of the landing facility was the Reduced Gravity Simulator, which was attached to an overhead, lightweight trolley track. There, suspended on one side by a network of slings and cables, an astronaut's ability to walk, run, and perform the various tasks required during lunar excursions was evaluated.

Armstrong offered what was perhaps the greatest tribute to the importance of his Langley training in Apollo 11's success. When asked what it was like to land on the moon, he replied: "Like Langley." All Courtesy- Langley Research Center

More: NASA Langley 100 - A Storied Legacy, A Soaring Future

Image Credit: NASA

 

Ames Research Center Contributions to Apollo

"Ames researchers quietly contributed to the Apollo mission. Public attention focused on the spectacular—powerful rockets, massive spaceports, mission control centers, and charismatic astronauts. Ames hosted none of these spectacles. Perhaps the most exciting photographs to emerge from that era, around Ames, were of tiny capsule models ablaze in a high-speed ballistic range or a high-temperature arc jet tunnel. Instead, behind the scenes, Ames researchers gathered knowledge about new scientific fields that needed to be known and tested their technologies with painstaking precision. And they did so with a style that was uniquely Ames. Researchers with many areas of expertise discussed their work persistently and freely, then cooperated to bring every tool they had to solve a very complex problem. And they were given the freedom to work quickly and to their own ideal of thoroughness.

Ames developed some key Apollo technologies, most importantly technologies to allow the astronauts to return safely to earth. Building upon what was already two decades of research on re-entry physics and material science—a discipline today known as aerothermodynamics— NASA researchers at Ames devised the basic shape of the Apollo capsule and its thermal protection system. Today, almost sixty-five years later, all spacecraft are still derived from essential insights earned at Ames.

Before Ames began its work many thought that a spacecraft re-entering the Earth’s atmosphere at meteoric speeds would, like a meteor, burn into a fireball. Those who speculated about spacecraft design suggested pointy cone-shape tips of hardened metal to pierce the atmosphere with the least possible friction and the slowest possible melting. Harvey Allen stepped outside the conventional thought, and took an entirely fresh approach. In 1948 Allen advanced the blunt-body concept, which was further developed by Alfred Eggers and Dean Chapman." More here...

 

Apollo 11- A Giant leap for Mankind

Photograph taken from the Apollo 11 spacecraft during its translunar coast toward the moon. Apollo 11 was already 98,000 nautical miles from Earth made on July 17th, 1969.  

Photograph taken from the Apollo 11 spacecraft during its translunar coast toward the moon.

Apollo 11 was already 98,000 nautical miles from Earth made on July 17th, 1969.

 

"Those of us who were lucky enough to have seen Apollo 11, and who remain privileged to shepherd its memory, might, as Americans, think of ourselves as part of the “we” who were first the Moon and of the “we” who came in peace. But we were observers, not participants. We watched it, we supported it, but we didn’t make it happen. A tiny sliver of Americans were involved hands-on. It was theirs.

Ours is what remains unfinished in the mission."

 

Apollo 204 (Apollo 1) Information

Benefits of Apollo

Apollo 11 - By Gerald Blackburn

Apollo Program Timeline       

    Apollo Missions       

      More Apollo Links in The Library

 

 

Remembering the Apollo 1 Crew

"On Jan. 27, 1967, veteran astronaut Gus Grissom, first American spacewalker Ed White and rookie Roger Chaffee (left-to-right) were preparing for what was to be the first manned Apollo flight. The astronauts were sitting atop the launch pad for a pre-launch test when a fire broke out in their Apollo capsule. The investigation into the fatal accident led to major design and engineering changes, making the Apollo spacecraft safer for the coming journeys to the moon".

Ed White and Gus Grissom inspect Apollo Command Module at North American Rockwell in Downey, California. 1966

Ed White and Gus Grissom inspect Apollo Command Module at North American Rockwell in Downey, California. 1966

Image- Norm Casson                Apollo command module work at North American Rockwell Downey, CA 1966

Image- Norm Casson                Apollo command module work at North American Rockwell Downey, CA 1966

Apollo 1 Tragedy (NASA)
Jan. 27, 1967, tragedy struck on the launch pad at Cape Kennedy during a preflight test for Apollo 204 (AS-204). The mission was to be the first crewed flight of Apollo, and was scheduled to launch Feb. 21, 1967. Astronauts Virgil Grissom, Edward White and Roger Chaffee lost their lives when a fire swept through the command module, or CM.

The exhaustive investigation of the fire and extensive reworking of the Apollo command modules postponed crewed launches until NASA officials cleared them for flight. Saturn IB schedules were suspended for nearly a year, and the launch vehicle that finally bore the designation AS-204 carried a lunar module, or LM, as the payload, instead of a CM. The missions of AS-201 and AS-202 with Apollo spacecraft aboard had been unofficially known as Apollo 1 and Apollo 2 missions. AS-203 carried only the aerodynamic nose cone.

In the spring of 1967, NASA's Associate Administrator for Manned Space Flight, Dr. George E. Mueller, announced that the mission originally scheduled for Grissom, White and Chaffee would be known as Apollo 1, and said that the first Saturn V launch, scheduled for November 1967, would be known as Apollo 4. The eventual launch of AS-204 became known as the Apollo 5 mission. No missions or flights were ever designated Apollo 2 or 3.

 

The second launch of a Saturn V took place on schedule in the early morning of April 4, 1968. Known as AS-502, or Apollo 6, the flight was a success, though two first-stage engines shut down prematurely, and the third-stage engine failed to reignite after reaching orbit. More here- http://history.nasa.gov/Apollo204/

 

Crew
Virgil I. Grissom
Edward H. White
Roger B. Chaffee


Backup Crew
Walter M. Schirra Jr.
Donn F. Eisele
Walter Cunningham


Payload
Spacecraft-012

Apollo Pad Fire
Emergency Transmission: Jan. 27, 1967; 6:31:05 p.m. EST
Launch Complex 34
Saturn-IB AS-204
CSM-012

Apollo Block 1 work at Rockwell in Downey, 1966. Image- Norm Casson Collection    

Apollo Block 1 work at Rockwell in Downey, 1966. Image- Norm Casson Collection

 

 

1-26-67  Astronaut Eugene A. Cernan, wearing Block II A5L Pressure Garment Assembly, ingressing Apollo SC 101 CM during Apollo Crew Compartment Fit and Function C2F2 Test. North American Aviation, Inc., Downey, Calif.

1-26-67  Astronaut Eugene A. Cernan, wearing Block II A5L Pressure Garment Assembly, ingressing Apollo SC 101 CM during Apollo Crew Compartment Fit and Function C2F2 Test. North American Aviation, Inc., Downey, Calif.

Image- Aerospace Legacy Foundation Retiree Luncheon at Downey Studios, November 2008.

Image- Aerospace Legacy Foundation Retiree Luncheon at Downey Studios, November 2008.

Southern California engineers built Apollo spacecraft

"Before that “giant leap for mankind” 40 years ago today, a hundred-thousand small steps guided American astronauts toward the moon. Many of those steps originated in the Southland. KPCC’s Washington Correspondent Kitty Felde has this story about how the Apollo 11 command module got to the Smithsonian Institution via the moon... and Downey, California." More here...

Blackburn: "When we won the contract to go build Apollos, nobody had ever done that before. And so there was no book on the shelf that you went to and said here’s how you build a spacecraft. We had to start with building cardboard models.

So we actually built full-scale mockups, they are called, out of cardboard and wood to see, well, what would it look like, and how big would it be, and how would you get in, and where would the switches and panels be, where do the windows go?" More here...

Apollo SC-104 crew compartment stowage review at North American, Downey, Calif., for the Apollo 9 crew training May 2, 1968. Image- Rockwell

Apollo SC-104 crew compartment stowage review at North American, Downey, Calif., for the Apollo 9 crew training May 2, 1968. Image- Rockwell

 

Apollo's Home Base- North American Rockwell in Downey, California

Rockwell International early 1990's aerial view.

Rockwell International early 1990's aerial view.

 

 

 

 

 

Apollo Space Program Downey, California      

Southern California's Aviation and Aerospace History      

America's Aviation and Aerospace History